Indian Statistical Institute, Bangalore M. Math. II Year, First Semester Mid-Sem Examination Fourier Analysis

Time: 3 hours September 27, 2010

Maximum marks you can get is 40. Part A with 20 marks is compulsory. So max marks you can get in parts B is 20.

Notation For any function f, the fourier transform of f is denoted by \widehat{f}

PART - A

- 1. Let $f_1(x) = (1 x^2)e^{-\frac{x^2}{2}}$. Show that $\int dt \quad \frac{|\hat{f}_1(t)|^2}{|t|} < \infty$. [2]
- 2. Let $g \in L^2(R)$ be given by $\widehat{g}(t) = \chi_{[\pi, 2\pi]}^{(|t|)} e^{it/2}$. Show that the family $\{g(2^p t r) : p, r \text{ are integers }\}$ is a complete family in the Hilbert space $L^2(R)$. [4]
- 3. Let $SL^2(n, j)$, be the L^2 spline functions of order n on standard intervals of length 2^{-j} , given by $SL^2(n, j) = \{f \in L^2(R) : f \in C^{n-1}(R), \text{ and } on [r2^{-j}, (r+1)2^{-j}] \text{ is a polynomial of degree } \leq n \text{ for each integer } r\}.$

Here *j* is an integer. Show that $\bigcap_{j=-\infty}^{\infty} SL^2(n,j) = 0.$ [3]

- 4. Calculate the Fourier transform of the following functions.
 - a) $f_1(t) = e^{-t}$ for $t \ge 0, 0$ for $t \le 0$ b) $f_2(t) = e^t$ for $t \le 0, 0$ for t > 0c) $e^{-|t|}$ d) Let $f(t) = f_1(t) - f_2(t)$. Find $limit_{\delta \longrightarrow 0}$, $[f(\delta)]$ (ξ) e) Give $g \in L'(R)$ such that \hat{g} is not in L'(R) and prove your claim. [5]
- 5. a) Show that

 $\sup_{\substack{|y| \le a}} \int_{|x|\ge 2a} \left| \frac{1}{x-y} - \frac{1}{x} \right| \, dx \le \frac{k}{2a}. \text{ for some constant } k, \text{ independent of } a > 0.$ [3]

6. Let $\psi \varepsilon L^2(R) \cap L'(R)$, $f \varepsilon L^2(R)$. Define $\psi_{a,b}(t) = \frac{1}{\sqrt{a}} \psi[\frac{t-b}{a}]$. For a > 0, b real. Show that $\int db e^{-itb} \langle f, \psi_{a,b} \rangle$

$$= k \sqrt{a} \ \widehat{f}(t) \ \widehat{\psi}(at)$$

for some constant k independent of f. [3]

- 7. Let $f_2 \in L' \cap L^2(R)$, supp f_2 bounded and $\int f_2 = 0$. Show that $\int dt \quad \frac{|\hat{f}_2(t)|^2}{|t|} < \infty.$ [2]
- 8. Let $f, Qf \in L'(r)$ where (Qf)(x) = xf(x). Show that \hat{f} , is a differentiable function. Find a relation between derivative of \hat{f} and (Qf) and prove your claim. [3]
- 9. Let $f \varepsilon L'(R)$ and continuous. Show that $\liminf |f(t)| = 0$ $|t| \longrightarrow \infty$ [3]
- 10. Let $f, f' \in L'(R)$. Find a relation between $Q\hat{f}$ and $\hat{f'}$ and prove your claim. [2]
- 11. Let $B_0 = \chi_{[0,1]}$, the indicator function of the interval [0,1]. Show that $B_n = B_0 * B_o * \cdots * B_0$, convolution of $B_0, n+1$ times, is in $C^{n-1}(R)$ and B_n is a polynomial of degree $\leq n$ on each interval [j, j+1] for j any integer. [3]
- 12. Let $f \in L'(R)$ with $\int f(t) dt = 0$ and $supp \ f \subset [-a, a]$ for some a > 0. Let H be the Hilbert transform of f. show that $\int_{|t| \ge 2a} |H(f)(t)| dt \le 1$

```
K||f||_1.
```

for some constant K independent of f.

[3]

- 13. Let $f \in L'(R), f \ge 0$, and $\lambda > 0$. State and prove Calderon Zygmund decomposition for f at level λ . [5]
- 14. Let $f \in C'[0, 2\pi]$ with $f(0) = f(2\pi)$. Let $S_n(f)$ be the fourier series associated with f. Show that $||S_n(f) - f||_{\infty} \longrightarrow 0$ as $n \longrightarrow \infty$. [3]
- 15. Let $f \in L'(R)$ with bounded support. State Paley-Wiener theorem for \hat{f} . [2]